首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347629篇
  免费   28795篇
  国内免费   14409篇
工业技术   390833篇
  2024年   635篇
  2023年   5423篇
  2022年   8758篇
  2021年   13953篇
  2020年   10740篇
  2019年   8834篇
  2018年   10059篇
  2017年   11364篇
  2016年   10010篇
  2015年   14183篇
  2014年   17430篇
  2013年   20814篇
  2012年   22849篇
  2011年   24739篇
  2010年   21333篇
  2009年   20185篇
  2008年   19648篇
  2007年   18894篇
  2006年   19581篇
  2005年   17049篇
  2004年   11046篇
  2003年   9358篇
  2002年   8614篇
  2001年   7517篇
  2000年   8028篇
  1999年   9295篇
  1998年   7421篇
  1997年   6269篇
  1996年   5975篇
  1995年   4917篇
  1994年   4088篇
  1993年   2862篇
  1992年   2336篇
  1991年   1695篇
  1990年   1251篇
  1989年   1009篇
  1988年   809篇
  1987年   535篇
  1986年   394篇
  1985年   262篇
  1984年   173篇
  1983年   113篇
  1982年   139篇
  1981年   92篇
  1980年   78篇
  1979年   32篇
  1976年   9篇
  1965年   3篇
  1959年   9篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
以雁崖薄煤层矿井采用的WG-2×125/571-WD型滚筒采煤机为研究对象,在阐述了滚筒装煤机理的计算过程后,利用MATLAB软件对叶片螺旋升角与装煤效率进行了模拟仿真,获得了螺旋升角的最佳值,接着利用PFC颗粒流软件将改进后的滚筒结构与原滚筒结构进行了模拟仿真.通过仿真得知:改进后的滚筒结构不仅能有效提高抛煤速度,而且能缩短煤流在叶片上的滑移时间.  相似文献   
72.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
73.
Jingdezhen is famous for its bluish white (Qingbai) porcelains of the Song Dynasty, and those decorated with iron spots are distinctive among them. Herein, iron spots on a bluish white porcelain were investigated using a series of microscopic and spectroscopic characterizations. We found the decreasing iron content from more than 8 wt% to about 2 wt% during the glaze color transition from rusty to brown and finally into green, which built a connection on the coloring mechanism of iron-rich crystallized glaze and celadon glaze. We identified the rare ε-Fe2O3, a promising magnetic material, in both the dark brown crystals and the triangular crystals in the rusty area, which is its first discovery among bluish white porcelains. Based on these findings, we discussed the coloring mechanism of iron-spot decoration along with the physical form of the iron oxide crystals, indicating the partially reducing atmosphere during firing process.  相似文献   
74.
The influences of atmosphere during processes of melting and heat treatment, heat treatment temperature, Fe3O4 content and basicity on the magnetic properties of magnetite-based glass ceramics were investigated. For sample containing 20 % Fe3O4 melted in different atmospheres, the highest saturation magnetisation was realized in 20vol% air + 80 vol% Ar, due to the fact that ratio of Fe3+ to Fe2+ in melt obtained in this atmosphere was close to 2. However, it was found that the coercivity of glass ceramics was not affected by the melting atmosphere. A high sintering temperature led to the decrease of saturation magnetisation and the increase of coercivity. As increasing Fe3O4 content, the main crystal phase transformed from CaSiO3 to CaFe0.6Al1.3Si1.08O6 and finally to magnetite phase, accompanied by the increase of saturation magnetisation and coercivity. In addition, the increase of basicity caused the decrease of saturation magnetisation and the increase of coercivity.  相似文献   
75.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
76.
As an anticancer drugs, arsenic trioxide (ATO) has been certified to efficiently treat refractory acute promyelocytic leukemia (APL). Unfortunately it suffers from limited therapeutic potency for solid tumors due to its in vivo restricted administration dose and rapid renal clearance. Herein, distinct 2D arsenic-phosphorus (AsP) nanosheets are engineered by adopting an alloy strategy followed by exfoliation, which can confine toxic arsenic into AsP crystals, thus significantly improving the biosafety and biocompatibility of arsenic-based chemotherapeutic drugs. Of particular note, the high light absorption and strong photothermal-conversion efficiency (37.6%) in the second near infrared biowindow (NIR-II) of AsP nanosheets not only endow them with desirable contrast-enhanced photoacoustic imaging properties, but also achieve efficient local tumor hyperthermia, which further synergistically triggers the in-situ transformation from low toxic/nontoxic AsP crystals into highly toxic arsenic species, exerting a strong arsenic-mediated antineoplastic effect. Both in vitro and in vivo data verify the synergy between photonic therapy in NIR-II and enhanced chemotherapy as enabled by AsP nanosheets, paving the way for efficient nanomedicine-enabled arsenic-based chemotherapeutic tumor treatment.  相似文献   
77.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
78.
A novel CdS/CaFe2O4 (CS/CFO) heterogeneous p-n junction was created by thermal deposition of CaFe2O4 nanoparticles on CdS rods. The CS/CFO hetero-structured photocatalysts exhibited increasingly efficient visible light harvesting compared to the bare CdS. The CS/CFO composites also presented higher photocurrent and slower decay of photoluminescence, suggesting a better separation of the photo-generated electrons and holes. The photocatalytic H2 evolution quantity on the optimized CS/CFO composite from water in the presence of ethanol was up to 2200 μmol after 3-h visible light illumination, which is more than twice that of the pristine CdS. The chemical interaction between CdS and CaFe2O4 was confirmed by the shifts in the XPS peaks, which made it possible for the charge carriers to transfer across the p-n junction interface. This research highlights the importance of forming an interfacial p-n heterojunction between two semiconductors for efficient charge separation and improved photocatalytic performance.  相似文献   
79.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
80.
In this paper, the crystal structure, vacancy defect, local electron density and magnetic properties of Gd1-xCaxCrO3 (0 ≤ x ≤ 0.3) polycrystalline samples were investigated systematically. The crystal structural analyses show that all the samples are orthorhombic phase and a structural distortion happens around x = 0.3. Due to the formation of Cr4+ ions, both the lattice constant and the Cr–O bond length decrease. The results of positron annihilation spectrum reveals that the vacancy defect concentration increases and the local electron structure changes with the introduction of Ca2+ ions. The field-cooled (FC) and zero-field cooled (ZFC) curves of Gd1-xCaxCrO3 samples measured under H = 100 Oe exhibits negative magnetization characteristics due to the interaction between Gd3+ and Cr3+ ions, and the magnetism can be affected by the structural distortion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号